Future sources of district heating – results from energy systems analysis

District heating in decarbonising economies.
Climate Recon 2050 Webinar

Marie Münster
Professor WSR
District heating production

(TIMES-DK Energy agreement 2018)

https://energiaftalen.tokni.co
District heating (DH) in Denmark

>50% of heat demand covered with district heating
>50% from renewable energy
>50% decentral production
66% of DH from CHP

Development in heat pumps for DH

Bjarke Lava Paaske. PlanEnergi. Februar 2018 update
Development in solar heating for DH

Figure 3. Solar collector area of Danish solar heating plants for district heating.

Accelerating the clean energy revolution - perspectives on innovation challenges: DTU International Energy Report 2018

DTU Management Engineering, Technical University of Denmark
Examples

Solar heating
Silkeborg 156,694 m²

Pit storage
Vojens 200,000 m³

Photos from Simon Furbo
Integrated energy systems

Resources

- Electricity import/export
- Variable electricity
- Electricity and heat generation
- Solar thermal
- Bioenergy
- Fossil fuels
- Natural gas

Conversion

- Power to heat
- Electrolysis
- Heat storage
- Anerobic digestion
- Gas catalysis
- Thermal gasification
- Gas storage
- RE-fuels

Demand

- Transport
- Residential
- Industry
- HV
- EV

Gas systems (including local systems, transportation of methane, syngas, biogas and H2)

Liquid fuel for transport

Electricity system
Example 1) Waste incineration

- **The economic value of imports of combustible waste in systems with high shares of district heating and variable renewable energy.** / Pizarro Alonso, Amalia Rosa; Cimpan, Ciprian; Ljunggren Söderman, Maria; Ravn, Hans V.; Münster, Marie. Waste Management, Vol. 79, 2018, p. 324-338.

- **The climate footprint of imports of combustible waste in systems with high shares of district heating and variable renewable energy.** / Pizarro Alonso, Amalia Rosa; Cimpan, Ciprian; Münster, Marie. Waste Management, 2018
Import of waste

1. Is there a raw socioeconomic benefit of importing combustible waste to Denmark?
2. Is there a climate benefit of importing waste?
Waste generation DK (2014-2035)

Figure 5. Forecast of household and industrial waste available for incineration in Denmark
Electricity consumption
DK 2014 & 2035 (LowElec & HighElec)

Figure 8. Gross Electricity Consumption in the Danish scenarios until 2035 (Danish Energy Agency, 2015)
Value of waste import (DK 2014)

Figure 14. Uncertainty Range of the socioeconomic value from importing waste depending on the ratio between fix operational costs and variable operational costs: upper range corresponds to 35% of the waste treatment costs as variable costs and lower range corresponds to 65%
Value of waste import (DK 2025-2035)
Environmental system scope

Figure 1. System boundaries, induced and avoided processes associated with import of combustible waste. The background system sitting outside a country boundary, reflect that electricity markets are international.
Scenarios

Dk energy system
Waste quality
Transport mode
Transport distance
Alt. waste man.
Alt. el. prod.
Biomass marginal

450 x 4 scenarios

Figure 3. Overview of scenarios for assessing the climate footprint from waste imports (for each milestone year and quantity imported)
Average net GHG balance
Importing 0.3 Mt/a (2014)

Figure 8. Year 2014 - Average net GHG balance when importing 0.3 Mt/a (Functional Unit) of low LHV waste transported 1000 km by ship: Negative values represent avoided CO$_2$-eq emissions, and positive values, induced emissions (coloured bars represent the foreground systems and dashed bars the background systems; vertical names in the x-axis label represent avoided waste management process and horizontal labels the affected fuel for electricity generation in the exporting country)
Average net GHG emissions

2035 HighElec, importing 0.5 Mt/a
(Marginal el. abroad - biomass marginal)

Figure 11. Year 2035 - Average net GHG Emissions (kg CO$_2$-eq/t waste) in the HighElec scenario when importing 0.5 Mt/a of Low LHV waste by ship 1000 km – each label represents the Marginal Electricity Abroad (section 4.6) and the biomass marginal (see Table 1, CID: climate ideal marginal in low demand, CIHD: climate ideal marginal in high demand and MMHD: mixed marginal in high demand)
Conclusion - environmental impact

- From a raw socio-economic perspective it pays to import waste to DK
- But mixed combustible waste may pollute future clean energy systems (better use with CHP)
- Leaving the waste at engineered landfills may be the best option (counting Cbio sink)
- Other environmental impacts should also be analysed

- So, only import waste if
 - 1) the alternative waste management will be at a sanitary landfill or if
 - 2) local incineration in exporting country would displace green electricity
Example 2: Biorefineries

Figure 3: Model linking between TIMES-DK and Balmorel-OptiFlow

Venturini, G. Pizarro-Alonso, A. Münster, M. How to maximise the value of residual biomass resources? The case of straw in Denmark. PhD thesis
Scenarios focussing on bio-refineries (TIMES-DK and OptiFlow)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
<th>Straw use</th>
<th>CO₂ target</th>
<th>Biomass imports</th>
<th>Biofuels imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>Business as Usual</td>
<td>Heat&Power 23%</td>
<td></td>
<td>Allowed</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left on field 50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fodder&bedding 27%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon-constrained</td>
<td>Fodder&bedding 27%</td>
<td>Fossil fuels phase-out 2050</td>
<td>Allowed</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy system 73%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO-IMP</td>
<td>No bioenergy imports</td>
<td>Fodder&bedding 27%</td>
<td>Fossil fuels phase-out 2050</td>
<td>Not allowed</td>
<td>Not allowed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy system 73%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Straw use

Figure 11: Use of straw across years in the analysed scenarios
Excess heat by origin plant

- Bioethanol from corn fermentation
- Hydrogen from electrolyzer
- Biodiesel from straw gasification
- Biodiesel by hydrotreatment of vegetable oil
- Bioethanol from sugarbeet fermentation
- Biodiesel from wood gasification
- Methanol by wood gasification
- Methanation of biogas
Conclusion

• Danish biorefineries could contribute substantially to future district heating - particularly from thermal gasification
• There is not enough domestic biomass with current production to fuel both land-, sea- and air based transport
Summary

- Sources for heat may change in the future
- We need smart planning (and modeling) to utilise new sources
- Some technologies are well on the way
- Others may need some initial help
The End

• Questions and comments?

maem@dtu.dk
@MarieMynster