Low carbon scenarios for informing longer term decarbonisation strategies in the UK

> Steve Pye UCL Energy Institute

Presentation at Technical Dialogue Meeting, Climate Recon 2050 Project April 11<sup>th</sup> 2018



### **Presentation overview**

- 1. UK context
- 2. Key modelling insights from low carbon scenarios since 2003
- 3. Reflecting on scenario analysis & the policy-modelling interface
- 4. How practice has and can improve



### The UK context: where we are now

- One of the most ambitious legislated targets, set in 2008 (10 years ago); (at least) 80% GHG reduction in 2050, relative to 1990
- Interim 5 yr carbon budgets to maintain mitigation effort, whilst providing flexibility





### The UK context: recent gains from coal phase-out

• CO<sub>2</sub> emissions are now at below 1890 levels, with progress due to carbon floor price in power generation, and 2025 phase out commitment

UK coal use 1858-2017



CB



### UK low carbon scenarios; informing LT strategy

- Typically use of MARKAL-TIMES type energy system models
  - Technology-detailed, whole system, optimisation-based, national-scale
- Model traction due to -
  - Speaking 'language of decision makers' (economics of options)
  - Aided the bringing together of sectoral interests in government
  - Acting as a 'boundary object' for different communities (Taylor et al. 2014)
  - Capacity available and from ex-Government lab
  - Recognised platform for longer term planning capability (credible)
  - Research funding & incumbency advantage over time



### UK energy and climate strategy timeline



### **UC**

#### Key insight 1: The transition to a low carbon economy is not cost-prohibitive

- Additional system costs in 2015 of the order of 1-2% 2050 GDP (~40 billion out of a £2.8 trillion economy)
- Other economic analysis that considers impact on wider economy sees a benefit, at least out to 2030 (<u>investment</u>, not costs)
- But cost of mitigation increases steeply as carbon target ratcheted up



CO2 reduction at different carbon prices. Source: Pye (based on ESME analysis)



## <u>Key insight 2</u>: Deep decarbonisation is technically feasible and there are numerous pathways......



**Decarbonisation of passenger car demand in the UK, 2010-2050.** Source: Pye et al. (2015)



# <u>Key insight 2</u>: Deep decarbonisation is technically feasible and there are numerous pathways.....but also some key techs

- CCS (and BECCS) good example of wide system effects on deployment, sector action and cost
- Need to improve analysis and communication on such effects, and insights ('push hard' and / or 'diversify due to risks')



Generation by nuclear (left) and wind (right) in 2050, with CCS (yellow) or without CCS (green). Source: Pye and Keppo (2018)



Annual gas consumption (Bcm

<u>Key insight 3</u>: Path dependency issues require that policy decisions undertaken now recognise longer term objectives.....

- Strategic decisions can lock-in a specific system due to the long asset lifetime of energy infrastructure e.g. airports, power stations
- Increased costs from a short term orientated investment focus (AEA, 2008)
- Recent focus on the future role of gas (McGlade et al. 2018)







#### Key insight 4: ....and therefore long term target ambition matters

- Post-Paris, argued that a net-zero CO<sub>2</sub> target for the 2045-70 range could help better focus longer term strategy, and provide a clearer goal for stakeholders
- Government to establish net-zero target.....but just not yet





# <u>Key insight 5</u>: Sectoral linkages and interdependencies highlight the danger of silo thinking in policy

- It makes sense to focus on specific sectors first, while capacity is built to address other parts of the system e.g. power sector decarbonisation
- Some sectors require decarbonisation first e.g. to allow for end use sector electrification
- Limited resources will be competed for by different sectors e.g. bioenergy. Insights into optimal use of resources.



### Reflecting on scenarios (McDowall et al. 2014)

#### **Review of historical scenarios**

- Actual historical developments frequently lie outside the ranges of scenarios usefulness in mapping uncertainty space?
- Recommendations to ......
  - Focus on use of multiple studies
  - Avoid reliance solely on energy community to imagine the future
  - Recognise that scenarios often reflect current concerns in energy policy domain...but fail to see broader shifts (e.g. in socio-political domain also see Li and Pye, 2018)
  - Question if scenarios can be more exploratory, not always least cost / normative
  - View scenarios as basis for opening up / facilitating discussion about options





### Reflecting on scenarios (McDowall et al. 2014)

#### **Engagement on use and communication of scenarios**

- Useful for exploring energy system dynamics, integrating sectors
- Modelling exercises generally useful, although some scenario assessments remain in the academic domain
- Improvements on......
  - Uncertainty: move from deterministic (core case) to more systematic approaches that capture wide ranges
  - Transparency: improved publication of assumptions and documentation
  - Communication: caveats on insights without stating what this means for interpretation; not always provision of jargon-free high level summaries



### Remaining relevant to decision makers: evolution of approach

- Moving towards uncertainty assessment methods (Global sensitivity analysis, stochastic programming, modelling to generate alternative, robust decision making etc.)
- Collaborating with other modelling 'tribes'
- Preparing to re-orientate research (LT strategy ------ > NT policy design and implementation)
- Embedding stakeholders in analysis process e.g. UKTM model in UK ministry (BEIS)
- Focussing on demand side options, regional linkages, and opportunity / benefits
- Maintaining core funding to allow for the above!

| Category     | Current limitation                                                          | Proposed improvement                              |  |
|--------------|-----------------------------------------------------------------------------|---------------------------------------------------|--|
| Enabling     | Uneven path-dependent development                                           | Couple to funding and policy cycles               |  |
| Coordination | Incumbency advantage                                                        | Platform-based expert user groups                 |  |
| Review       | Modelling silos                                                             | Interdisciplinary external stakeholder review     |  |
| Transparency | Lack of incentives for quality assurance, version control and documentation | Targeted resourcing for these model process tasks |  |

#### Table 1 | Key reinvention elements of the energy modelling-policy interface.

### An international perspective: DDPP





- Demonstrated that countries can achieve deeply decarbonized energy systems by 2050, commensurate with the transformation required under the internationally agreed 2 °C target whilst pursuing development objectives
- Based on national level modelling analyses by a consortium of the 16 largest emitting countries (>70% of global energy-related CO2 emissions)
- Important technical project to support Article
  4.19 of the Paris Agreement





### **Project reflections**

- Many of the same challenges faced in the UK concerning modelling low carbon scenarios – communication, transparency, policy relevance, adequacy of approaches etc. (Pye and Bataille, 2016)
- Huge benefits from network in challenging assumptions, cross-fertilization of ideas, developing regional analysis (Spencer et al. 2017)
- .....but large capacity gaps in many regions of the world
- Network aims to expand in supporting capacity elsewhere and doing more sector specific analyses. Transport report launched at COP23 (IDDRI 2017), and recent industry paper published (Bataille et al. 2018)



### References

AEA (2008). MARKAL-MED model runs of long term carbon reduction targets in the UK. On behalf of the Committee on Climate Change. November 2008. <u>https://www.theccc.org.uk/publication/building-a-low-carbon-economy-the-uks-contribution-to-tackling-climate-change-2/</u>

Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., ... & Sartor, O. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris agreement. *Journal of Cleaner Production*.

CCC (2018). An independent assessment of the UK's Clean Growth Strategy: From ambition to action. Committee on Climate Change. January 2018

IDDRI (2017). Beyond emission targets: how to decarbonize the passenger transport sector? https://www.iddri.org/sites/default/files/import/publications/ib0717\_ddpp-transport.pdf

Li, F. G., & Pye, S. (2018). Uncertainty, politics, and technology: Expert perceptions on energy transitions in the United Kingdom. *Energy Research & Social Science*, *37*, 122-132.

McDowall, W., Trutnevyte, E., Tomei, J., & Keppo, I. (2014). *Reflecting on scenarios, UKERC energy systems theme working paper no*. UKERC/WP/ES/2014/002. UK Energy Research Centre.

McGlade, C., Pye, S., Ekins, P., Bradshaw, M., & Watson, J. (2018). The future role of natural gas in the UK: a bridge to nowhere?. *Energy Policy*, 113, 454-465.

Pye, S. and Keppo, I. (2018). Coevolution and competition of technologies in a low carbon system. Technical report D2.4, REEEM project. www.reeem.org

Pye, S., Li, F. G., Price, J., & Fais, B. (2017). Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era. *Nature Energy*, 2(3), 17024.

Pye, S., & Bataille, C. (2016). Improving deep decarbonization modelling capacity for developed and developing country contexts. *Climate Policy*, *16*(sup1), S27-S46.

Pye, S., Anandarajah, G., Fais, B., McGlade, C. & Strachan, N. (2015). Pathways to Deep Decarbonization in the United Kingdom. SDSN/IDDRI.

Ribera, T., Colombier, M., Waisman, H., Bataille, C., Pierfederici, R., Sachs, J., ... & Pharabod, I. (2015). Pathways to deep decarbonization-2015 report.

Spencer, T., Pierfederici, R., Sartor, O., Berghmans, N., Samadi, S., Fischedick, M., ... & Capros, P. (2017). Tracking sectoral progress in the deep decarbonisation of energy systems in Europe. *Energy Policy*, *110*, 509-517.

Strachan, N., Fais, B., & Daly, H. (2016). Reinventing the energy modelling–policy interface. *Nature Energy*, *1*, 16012.

Taylor, P. G., Upham, P., McDowall, W., & Christopherson, D. (2014). Energy model, boundary object and societal lens: 35 years of the MARKAL model in the UK. *Energy Research & Social Science*, *4*, 32-41.

Trutnevyte, E., McDowall, W., Tomei, J., & Keppo, I. (2016). Energy scenario choices: Insights from a retrospective review of UK energy futures. *Renewable and sustainable energy reviews*, *55*, 326-337.



### Thanks for listening.

s.pye@ucl.ac.uk

@st\_pye

UCL Energy Institute, <a href="http://www.bartlett.ucl.ac.uk/energy">http://www.bartlett.ucl.ac.uk/energy</a>



### **Supplementary slides**



DEEP DECARBONIZATION PATHWAYS PROJECT

www.deepdecarbonization.org



- Objective to demonstrate that countries can achieve deeply decarbonized energy systems by 2050, commensurate with the transformation required under the internationally agreed 2 °C target
- Based on national level modelling analyses by a consortium of the 16 largest emitting countries (>70% of global energy-related CO<sub>2</sub> emissions)
- Complimentary to global Integrated Assessment Models (IAMs) that have dominated the IPCC process

### Features of the decarbonisation challenge that models have to capture

- Long term framing (uncertainty)
- Coherence between near and longer term
- Structural (not incremental) change
- Global co-operation
- Multiple objectives affordability, security, growth
- Multiple actors





### **Principles of DDPP approach**

- National-scale approach: account for domestic circumstances and promote synergies with socio-economic priorities (policy traction, whole system)
- Long-term vision to 2050: inform short term decisions and the sequence of actions (≠ risks of lock-ins) (normative, not exploratory)
- Transparency, granularity & diversity: enable engagement with decision makers and dialogue with different groups of stakeholders

### **Key outcomes of DDPP**

• Quantitative insights:

Transformative scenarios are feasible in all the countries we have studied, and compatible with development objectives

Policy impact:

Important supporting activity to Paris Agreement, Art. 4.19, and national decision makers

 Network established: Modelling expertise to support 2050 Platform & Mid Century Strategies, and NDC strengthening Figure 4. (L) Average carbon intensity of electricity for DDPP countries as a whole, 2010 and 2050. (R) Carbon intensity of electricity in 2050, for individual DDPP countries.



Figure 7. Electricity generation mix in 2050



Source: Ribera et al. (DDPP) (2015)



# Necessary features of modelling decarbonisation pathways

Drawing from the Deep Decarbonisation Pathways Project (DDPP):

- **Normative**, not exploratory. Want to understand how we get to where we want (need) to go, not where we are likely to end up.
- **Country-led**. Leverage country expertise and understanding.
- **Policy traction**. Focus on policy priorities, economic insights etc.
- Long-term time horizon. Allow for assessment of path dependency issues, due to long life of assets.
- **Options-focused and cross-sectoral.** Explicit consideration of options across the system.
- Broad stakeholder engagement. Includes civil society and wider expert groups.



### Why use models?

Hotz et al. (2015) highlight benefits -

- Explicit, clear, and systematic assumptions are written down and subject to questioning
- Allow for inferences of dynamics in complex systems multiple temporal and spatial scales, objectives etc.
- Allow for systematic experimentation what if I were to change X?



### Net-zero paper

### Position on UK targets since Paris.....no change

- Since Paris (March 2016), the Government in Parliament have committed to introducing a net-zero target at some point in the future. Date to be based on advice from the CCC.
- CCC set out recommendations in October 2016.
  - On global ambition, no change. Global ambition underlying current UK target sits within range of 2°C target at 66% probability
  - Recognition that 2050 UK emissions target level premised on large amounts of emission removal e.g. BECCS
  - On the logic underpinning the existing 2050 UK target, CO<sub>2</sub> should be zero by 2045-65 and net GHGs by 2060-90...... but not setting legislative target now







### Approach to analysis (2)

#### Select allocation approach

Allocation method to derive UK budget share (Raupach et al., 2014)

- Equity allocation is on an equal per capita basis (0.8% share)
- Inertia allocation determined by 2010 share of global emissions (1.5% share)





### Approach to analysis (3)

#### Model budget cases under key energy system uncertainties

From earlier analysis, there are a range of key uncertainties that impact on the low carbon transition, both in terms of technology choice and economics





### Net CO<sub>2</sub> emissions under the 590 & 1240 Gt budget

|                                 | 590 Equity (4 Gt) | 1240 Equity (9 Gt) | 1240 Inertia (19 Gt) |
|---------------------------------|-------------------|--------------------|----------------------|
| Cum. CO2 to 2050                | 33%               | 79%                | 127%                 |
| Ave. mitigation rate / n-z date | 9% / 2040-45      | 4% / 2060-70       | 2% / 2080            |
| Sensitivities not solved        | 70%               | 50%                | 50%                  |





### **Power decarbonisation & expansion**

- 590 Equity: immediate and rapid deployment across all LC generation types
  - Post-2050 reductions due to other LC energy carriers (but sunk investment?)
- 1240 Equity: similar pre-2050 decarbonisation, but larger system post-2050





### Shift away from liquid fossil fuels

- Both Equity cases see more rapid reductions than policy case, particularly 590 Equity
- Floor level of ~500 PJ driven by international transport; resulting residual emissions drives need for BECCS deployment
- Large uncertainties related to transport demand level



Oil consumption, 2010-2100



### **System cost implications**

- Marginal costs highlight challenge of early & rapid mitigation in 590 Equity
- Annual system costs 20-30% higher pre-2050 (50-100 bn) in 590 Equity, 2-3% in 1240 Equity
- Costs most sensitive to (in order) biomass, CCS, demand response and then nuclear





### **Model insights**

- A longer term perspective, combined with a full horizon budget-based approach, allows for a clearer understanding of eventual ambition – and implications for near term (pre-2050) action; without it, there is a danger we underestimate required action
- Any push towards an equity-based approach suggests stronger ambition, with a particular focus on near term action
- The most ambitious case (590 Equity) raises critical questions around how far we can push 'towards 1.5 °C' due to the time constraints, policy & social inertia and economic costs
- From technology perspective, CCS is critical, and in combination with bioenergy, to allow for negative emission technologies. Some sectors cannot be fully decarbonised (at least in this model).